Вторник , 29 сентября 2020
Нашел косяк ПутинаНавальный обходит ПутинаСША: убийственные данные по эпидемииСоздателя Nexta будут судить?Парадокса близнецов нет: объяснение на школьном уровнеСкладывается впечатление, что пенсию скоро вообще отменятКак бухают американцыКак “прямо” проверить постоянство скорости светаВ чем суть парадокса “Парадокс близнецов”Мы говорим навальный, подразумеваем Скрипаль. Мы говорим СкрипалКак сделать видеонаблюдение на даче?ОСАГО: кто виноват и что делатьСтраховые компании мошенничают с ОСАГО?Половина американцев не имеют свободных 100 долларовИмеют ли США право вводить санкции?Сколько платят за ЖКХ в США50% американцев получают от правительства больше денег, чем отдаютРаковая опухоль БелоруссииВельмі верагоднаКак отравили НавальногоЧто делать со старыми блоками питания?Кто ответит за карантин?Сила тяжести на поверхности классической черной дырыСравнение стоимости кВт⋅ч от солнечных панелей и ТЭСДоходы и расходы американцевПосле Лукашенко хоть потоп!Задача: поспорили как-то Миллер с Сеченым у кого больше… трубаКак объясняются парадоксы теорий относительностиНа Международной космической станции началась война дрелей?Почему я не читаю научно-популярную публицистикуКакого цвета классическая Черная дыра?Как решать задачи по физикеСимптоматика коронавируса на личном примере. Мои выводыУглеродный баланс атмосферы: почему не учитываются лесаПарадоксы многомерного пространстваКак выглядит проекция 4-мерной сферы в наше 3-мерное простраствоНалог на воздух: какой будет ответЗащищено: Отчеты по мировой энергииЭнергетика: кручу, верчу, запутать хочуПерспективы водородной энергетикиСнижение процентной ставки и рост промышленностиКрымнаш… дорого!Тупик космонавтикиАмериканские баксы для американцев!Единая энергетическая система – фикция!Наш дорогой РоскосмосКонец Роскосмоса? – опубликована стоимость запуска астронавтоУкраина подтасовывает данныеПовышение тарифов на газ для населения РоссииRussian lives matterШведы продолжают умирать от коронавируса, американцы снижают летКонец эпохи офшоров?Карантинные режимы в регионах РоссииГазпром: пир во время чумыСлабость Сибири: расследование
ГЛАВНАЯ >> Наука >> Парадоксы многомерного пространства

Парадоксы многомерного пространства

Математические выражения для многомерных объема и площади

Многомерный объем многомерной сферы радиуса r и размерности n равен:

Vn = ∫dx1 *…*dxn = ∫rn-1 * dr * ∫dΩ = rn/n * ∫dΩ (1)

Многомерный объем тонкого многомерного шарового слоя сферы радиуса r и размерности n равен:

dVn = rn-1 * ∫dΩ*dr (2)

Откуда легко получается, что многомерная площадь Sn (имеет размерность меньше на единицу) равна:

Sn = rn-1 * ∫dΩ (3)

Полный многомерный телесный угол Ωn равен:

Ωn = ∫dΩ =

Имеются рекурсивные соотношения:

Vn = 2 *

Sn = 2 *

Размерность 1 -отрезок 2 круг 3 шар 4 гиперсфера
Длина 2*r 2 *
Площадь * *
Объем 4/3 * *
4 мерный объем

Имеет ли 4-мерная сфера площадь и 5-мерная объем

4-x мерная гиперсфера не имеет… площади! Это кажется невероятным но это так! Но на самом деле, это легко понять.

Наш обычный трехмерный шар или сфера не имеет длины. Или, в каком то смысле, его длина бесконечность. Не возможно шар или сферу обмотать всюду плотно  бесконечно тонкой нитью. Это следствие того, что 3-х мерная сфера состоит из бесконечного количества 2-х мерных окружностей.

4-x мерная гиперсфера состоит из бесконечного количества трехмерных сфер, с бесконечной площадью!

Аналогично, 5-ти мерная сфера не имеет … трехмерного объема, точнее он так же бесконечный! Она состоит из бесконечного количества шаров!

При этом сами длины и площади конечно же существуют в многомерных пространствах. Например, трехмерный куб имеет длину ребра, но, опять-таки, неосмысленно говорить о длине грани!

4-х и 5-ти мерные кубы имею ребра, которые имеют длину, грани, которые имеют площадь, 3 – мерные грани которые имеют объем, и 5-мерный куб имеет 4-х мерные грани.

Нулевой многомерный объем и нулевая многомерная площадь

Если посмотреть на соотношения  (5) и (6) то видно, что начиная с некоторого n они начинают уменьшаться и в пределена на бесконечности они равны нулю! (стреметься к нулю приблизительно как 6/n).

Это еще более странно если вспомнить, что единичный куб, который конечно в объеме не стремится к нулю, а всегда строго равен 1 многомерному объему, вписан в единичную окружность (многомерного радиуса =1)!

Квадрат и круг

понятно, что не зависимо от n, всегда есть такая проекция. Минимальное  расстояние от  квадрата до окружности равно:

1-√2/2

Проекция куба внутри шара будет выглядеть так же. Но это одна из проекций. Можно найти и другую, и на которой расстояние от вершин куба до сферы будет равно:

1-√3/2

Проекция сферы и куба

 

Вершины  4-х мерного единичного гиперкуба будет лежать точно на границе 4-х мерной гибперсферы!

1-√4/2 = 0

Проекция 4-х мерных гиперкуба и гиперсферы. Из вершины в центре выходит 4 грани!!

Со следующего измерения вершины выйдут за пределы гиперсферы и будут удаляться от нее по закону:

√n/2-1

При этом объем гиперкуба будет всегда равен 1 объему гиперпространства! А вот гиперсфера все резче будет “нырять” под грани гиперкуба.

Добраться с границы гиперсферы, центр которой находится в начале координат до этого начала не составляет труда – это всего 1 единица расстояния. Например, если сфера имеет радиус 1 метр, даже если это метр в пространстве с очень большим количеством измерений, то это всего 1 метр.

А вот добраться из вершины гиперкуба, центр которого также расположен в начале координат, до этого на начала “очень трудно”. Например, если ребро гиперкуба имеет длину 1 метр, а пространство имеет 1 000 000 измерений, то расстояние до начала координат равно…. 1 километру!! И это кратчайшее расстояние до начала координат!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

© Копирование и перепечатка материалов только с разрешения автора

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: